题目
费马点带图证明
急用!有图好理解
急用!有图好理解
提问时间:2021-02-19
答案
费马点的小论文
费马(Pierre de Fermat,1601-1665)是一位律师和法国政府的公务员,他利用闲暇的时间研究数学,他从未发表他的研究发现,但是他几乎与同时代的所有欧洲的大数学家保持通信.曾经,费马是欧洲所有数学研究进展之交换中心.
费马点的定义
费马点,就是平面上到三角形三顶点距离之和最小的点.
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点.
费马点的证明
证明一
Part1当有一个内角大于等于120度时候
对三角形内任一点P
延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP,PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)
则△APC≌△AP'C'
∵∠BAC≥120°
∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°
∴等腰三角形PAP'中,AP≥PP'
∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC
所以A是费马点
Part2当所有内角都小于120°时
做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H
易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S
则有2S=d(PA+PB+PC)
∵P'A≥P'H
所以2S△EP'F≤P'A×d
同理有
2S△DP'F≤P'B×d
2S△EP'D≤P'C×d
相加得2S≤d(P'A+P'B+P'C)
即PA+PB+PC≤P'A+P'B+P'C,当且仅当P,P'重合时取到等号
所以P是费马点
证明二
如右图所示,⊿ABE、⊿ACH、⊿BCG均为等边三角形,连接AG、CE、BH,CE与AB相交于F,则:
∵⊿AEC≌⊿ABH,
∴∠1=∠2,∴⊿BFP∽⊿EFA ,∠3 =∠4=60°
在PE上取点D ,使得 ⊿DBP为正三角形
则⊿ABP≌⊿EBD,得 AP=ED
∴PA+PB+PC=DE+PD+PC=CE
费马点的应用
(1)一条河宽1km,两岸各有一座城市A与B,A与B的直线距离是4km,今须铺设一条电缆连A与B,已知地下电缆修建费用为2万元/km,水下电缆为4万元/km,假定河两岸是直线,问应如何架设电缆方可使总施工费用达到最小?
(2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),问此网络应以什么方式连接这四个点,方可使所用的线总长最小?
费马(Pierre de Fermat,1601-1665)是一位律师和法国政府的公务员,他利用闲暇的时间研究数学,他从未发表他的研究发现,但是他几乎与同时代的所有欧洲的大数学家保持通信.曾经,费马是欧洲所有数学研究进展之交换中心.
费马点的定义
费马点,就是平面上到三角形三顶点距离之和最小的点.
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点.
费马点的证明
证明一
Part1当有一个内角大于等于120度时候
对三角形内任一点P
延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP,PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)
则△APC≌△AP'C'
∵∠BAC≥120°
∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°
∴等腰三角形PAP'中,AP≥PP'
∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC
所以A是费马点
Part2当所有内角都小于120°时
做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点,如图,再作任一异于P的点P',连结P'A,P'B,P'C,过P'作P'H垂直EF于H
易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计边长为d,面积为S
则有2S=d(PA+PB+PC)
∵P'A≥P'H
所以2S△EP'F≤P'A×d
同理有
2S△DP'F≤P'B×d
2S△EP'D≤P'C×d
相加得2S≤d(P'A+P'B+P'C)
即PA+PB+PC≤P'A+P'B+P'C,当且仅当P,P'重合时取到等号
所以P是费马点
证明二
如右图所示,⊿ABE、⊿ACH、⊿BCG均为等边三角形,连接AG、CE、BH,CE与AB相交于F,则:
∵⊿AEC≌⊿ABH,
∴∠1=∠2,∴⊿BFP∽⊿EFA ,∠3 =∠4=60°
在PE上取点D ,使得 ⊿DBP为正三角形
则⊿ABP≌⊿EBD,得 AP=ED
∴PA+PB+PC=DE+PD+PC=CE
费马点的应用
(1)一条河宽1km,两岸各有一座城市A与B,A与B的直线距离是4km,今须铺设一条电缆连A与B,已知地下电缆修建费用为2万元/km,水下电缆为4万元/km,假定河两岸是直线,问应如何架设电缆方可使总施工费用达到最小?
(2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),问此网络应以什么方式连接这四个点,方可使所用的线总长最小?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Tamia唱的If i were you 的中文意思是什么?
- 2设ab是方程X的平方+X-2010=0的两个实数根,则a的平方+2a+b的值为
- 3一台压路机,其前轮直径是2米,轮宽1.5米,每分钟滚动12周.求这台压路机一小时前进的距离?
- 4尤其是什么经纬网该怎么辩别经度,纬度
- 5将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
- 6生命是什么为题写一首诗
- 7芳芳对丽丽说:“我们一起看电影去.”(去掉引号句意不变)
- 83a-6b+6/2cd+3a已知;a与b互为相反数c与d互为倒数且3a+2不等于0
- 9Her son is ill.She has to him at home
- 10如果在等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2.我们知道5≠2,由此可以猜测x+2等于_.
热门考点
- 1两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_.
- 2人若通过墙上的小孔观察外面的景物,为了让看到的范围大些,应该采取的措施是
- 3某公园贴了一则告示:除了你的脚印,什么都别留下,除了你的记忆,什么都别带走.1、这则告示告诉游人什么呢?2、它写得好不好?说出你的理由?
- 4读科普书的好处,字最好多点,写作文用
- 5前面的抬起脚来,后面的紧跟上去,踏踏的声音像轻快的音乐.
- 6Yesterday was Saturday.It was sunny.I went to the Zhongshan Park with my
- 7南京长江大桥铁路桥全长大约多少米
- 8燃料电池的工作原理是将燃料和氧化剂(如O2)反应所放出的化学能直接转化为电能.
- 9为什么顺水速度=静水速度(船速)+水速?
- 10journal of hazardous materials怎样回答投稿问题