题目
已知椭圆
+
=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使
=
,则该椭圆的离心率的取值范围为( )
A. (0,
-1)
B. (
,1)
C. (0,
)
D. (
-1,1)
x2 |
a2 |
y2 |
b2 |
a |
sin∠PF1F2 |
c |
sin∠PF2F1 |
A. (0,
2 |
B. (
| ||
2 |
C. (0,
| ||
2 |
D. (
2 |
提问时间:2021-02-19
答案
在△PF1F2中,由正弦定理得:
=
则由已知得:
=
,
即:aPF1=cPF2
设点P(x0,y0)由焦点半径公式,
得:PF1=a+ex0,PF2=a-ex0
则a(a+ex0)=c(a-ex0)
解得:x0=
=
由椭圆的几何性质知:x0>-a则
>-a,
整理得e2+2e-1>0,解得:e<-
-1或e>
-1,又e∈(0,1),
故椭圆的离心率:e∈(
-1,1),
故选D.
PF2 |
sin∠PF1F2 |
PF1 |
sin∠PF2F1 |
则由已知得:
a |
PF2 |
c |
PF1 |
即:aPF1=cPF2
设点P(x0,y0)由焦点半径公式,
得:PF1=a+ex0,PF2=a-ex0
则a(a+ex0)=c(a-ex0)
解得:x0=
a(c-a) |
e(c+a) |
a(e-1) |
e(e+1) |
由椭圆的几何性质知:x0>-a则
a(e-1) |
e(e+1) |
整理得e2+2e-1>0,解得:e<-
2 |
2 |
故椭圆的离心率:e∈(
2 |
故选D.
由“
=
”的结构特征,联想到在△PF1F2中运用由正弦定理得:
=
两者结合起来,可得到
=
,再由焦点半径公式,代入可得到:a(a+ex0)=c(a-ex0)解出x0,由椭圆的范围,建立关于离心率的不等式求解.要注意椭圆离心率的范围.
a |
sin∠PF1F2 |
c |
sin∠PF1F2 |
PF2 |
sin∠PF1F2 |
PF1 |
sin∠PF2F1 |
a |
PF2 |
c |
PF1 |
正弦定理;椭圆的简单性质.
本题主要考查椭圆的定义,性质及焦点三角形的应用,特别是离心率应是椭圆考查的一个亮点,多数是用a,b,c转化,用椭圆的范围来求解离心率的范围.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1某车间20工人,每人每天生产甲零件5,乙零件4,甲赚16,乙24,共赚1808,有几人生产甲?
- 2正n边形的边长an,求这个正多边形的半径Rn,边心距rn及面积Sn
- 3电传播速度是多大?是接近光速吗?是的话为什么呢?
- 4四年级上册语文蟋蟀的住宅为啥说这座住宅算是伟大的工程了
- 5小学六年级英语决赛需要注意哪些语法
- 6小明看一本220页的文艺书,前4天每天看25页,余下的每天多看5页,还要几天能看完?请用列方程解答,
- 7已知月球到地球间的距离是3.84×105km,如果由地球向月球发射一系列电磁波,需要多长时间才能在地球上接收到由月球反射回来的电磁波?
- 8如图 三角形ABC中 ∠ACB=90度 CD垂直AB 垂足为D ∠A=60 求证BD=3AD
- 9有10个连续的自然数,前5个数之和是35,后5个数之和是( )
- 109100除以700的简便方法