当前位置: > 试确定整数n,使得2n+2能整除2003n+2002,即2003n+2002能被2n+2整除...
题目
试确定整数n,使得2n+2能整除2003n+2002,即2003n+2002能被2n+2整除
那个...回去查了一下题目发现n要是正整数

提问时间:2021-02-18

答案
因为2003n+2002能被2n+2整除,所以可设
2003n+2002=(2n+2)k(k为整数)
所以n=-1-1/(2k-2003)为整数,
所以2k-2003是1的约数,
所以2k-2003=1或-1,所以k=1001或1002
当k=1001时,n=0,当k=1002时,n=-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.