当前位置: > 无理数的意义...
题目
无理数的意义
自然数我们可以理解,从自然数衍伸的其它数:0、负数、有理数,我们也容易理解.但对于无理数,它是我们想象出来的,还是在实际生活中我们所依赖的?我们如何去解释一个无理数的意思?

提问时间:2021-02-18

答案
无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等.无理数的另一特征是无限的连分数表达式.传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现.他以几何方法证明无法用整数及分数表示.而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在.但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”.
无理数是无限不循环小数和开方开不尽的数.如圆周率、√2(根号2)等.
我自己把无理数简单记为:无限却不循环的小数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.