当前位置: > 若方程8x^2+(k+1)x+k-7=0有两个负根,则k的取值范围是...
题目
若方程8x^2+(k+1)x+k-7=0有两个负根,则k的取值范围是
需要详解

提问时间:2021-02-18

答案
因方程8x^2+(k+1)x+k-7=0有两个负根,则由根与系数的关系知:
x1+x2<0.
x1*x2>0.即有:
-1/8*(k+1)<0,
1/8*(k-7)>0,解联立不等式得:k>7.即k的范围是k>7.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.