当前位置: > 数列不等式请问:A1=1,A(n+1)=(An)/2+1/An,证明:根号2...
题目
数列不等式请问:A1=1,A(n+1)=(An)/2+1/An,证明:根号2<(An)/2+1/An<根号2+1/n

提问时间:2021-02-18

答案
证明:
A1>0,则易从递推公式看出An>0
记sqrt()为开根号,square root
A(n+1)-sqrt(2)=An/2+1/An-sqrt(2)
=(An^2-2sqrt(2)An+2)/(2An)
=(An-sqrt(2))^2/(2An)
前面给出了An>0的结论,还有当An不等于sqrt(2)时,(An-sqrt(2))^2>0,所以:
A(n+1)-sqrt(2)>0
即,类似于数学归纳法:
A1不等于sqrt(2),则A2>sqrt(2)
A2>sqrt(2),则A3>sqrt(2)
...
A(n)>sqrt(2),则A(n+1)=An/2+1/An>sqrt(2)
左边不等式得证.
现在证明右边不等式:
前面证明了An>sqrt(2),n>=2,则:
A(n+1)-sqrt(2)=(An-sqrt(2))^2/(2An)
=(1/2)*[1-(sqrt(2)/An)]*(An-sqrt(2))
由于An>sqrt(2),则1-(sqrt(2)/An)<1,所以:
A(n+1)-sqrt(2)<(1/2)*(An-sqrt(2)) ,n>=2
从而有:
A(n+1)-sqrt(2)<(1/(2^(n-1)))*(A2-sqrt(2))
->A(n+1)注意到3/2-sqrt(2)<1/2,则
A(n+1)显然2^n>n,则1/(2^n)<1/n,n>=1,不等式放缩得:
A(n+1)右边不等式得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.