当前位置: > 设a,b,c均为奇数,求证:ax2+bx+c=0无整数根...
题目
设a,b,c均为奇数,求证:ax2+bx+c=0无整数根

提问时间:2021-02-18

答案
证明:假设方程有整数根x=x0
∴ax02+bx0+c=0,∴c=-(ax02+bx0
若x0是偶数,
则ax02,bx0是偶数,
ax02+bx0是偶数,从而c是偶数,与题设矛盾、
若x0是奇数,则ax02,bx0是奇数,ax02+bx0是偶数,
从而c是偶数,与题设矛盾.
综上所述,方程ax2+bx+c=0没有整数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.