当前位置: > f(x)=ax^2+bx+c中,a、b、c为整数.且f(0),f(1)为奇数.求证f(x)=0无整数根...
题目
f(x)=ax^2+bx+c中,a、b、c为整数.且f(0),f(1)为奇数.求证f(x)=0无整数根
不好意思,孩子问我中题目,我数学忘记了差不多了,

提问时间:2021-02-18

答案
f(0)=c为奇数
所以c是奇数
f(1)=a+b+c为奇数
所以a+b为偶数
如果a,b同偶,则ax^2+bx是偶数
f(x)=ax^2+bx+c是个奇数≠0
如果a,b同奇,则ax^2,bx要么同偶,要么同奇
所以f(x)=ax^2+bx+c是个奇数≠0
所以方程f(x)=0无整数解
这样看:
f(0)=c为奇数
f(1)a+b+c为奇数
a+b为偶数
a为奇数b为奇数
或a为偶数b为偶数
对任意整数x,f(x)ax^2+bx+c为奇数
所以方程f(x)=0无整数解
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.