当前位置: > 求解齐次微分方程:(x^2+y^2)dx=xydy...
题目
求解齐次微分方程:(x^2+y^2)dx=xydy

提问时间:2021-02-18

答案
方程变形为dy/dx=x/y+y/x.令u=y/x,则y=xu,dy/dx=u++x*du/dx,所以原方程化为
u+x*du/dx=u+1/u.所以udu=dx/x.两边积分1/2*u^2=lnx+lnC.代入u=y/x得通解y^2=2x^2ln(Cx).
另外x≡0也是微分方程的解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.