当前位置: > 如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D. (1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求...
题目
如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
作业帮
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

提问时间:2021-02-18

答案
(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),
0=1+b+c
2=0+0+c

解得
b=-3
c=2

∴所求抛物线的解析式为y=x2-3x+2;
(2)∵A(1,0),B(0,2),作业帮
∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),
当x=3时,由y=x2-3x+2得y=2,
可知抛物线y=x2-3x+2过点(3,2),
∴将原抛物线沿y轴向下平移1个单位后过点C.
∴平移后的抛物线解析式为:y=x2-3x+1;
(3)∵点N在y=x2-3x+1上,可设N点坐标为(x0,x02-3x0+1),
将y=x2-3x+1配方得y=(x-
3
2
2-
5
4

∴其对称轴为直线x=
3
2
作业帮
①0≤x0
3
2
时,如图①,
S△NBB1=2S△NDD1
1
2
×1×x0=2×
1
2
×1×(
3
2
-x0)

∵x0=1,
此时x02-3x0+1=-1,
∴N点的坐标为(1,-1).
②当x0
3
2
时,如图②,
同理可得
1
2
×1×x0=2×
1
2
×(x0-
3
2
)

∴x0=3,
此时x02-3x0+1=1,
∴点N的坐标为(3,1).
③当x<0时,由图可知,N点不存在,
∴舍去.
综上,点N的坐标为(1,-1)或(3,1).
(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.

二次函数综合题.

此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.
此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.