当前位置: > y= x / (1-x)^3的单调区间、极值及其图形的拐点...
题目
y= x / (1-x)^3的单调区间、极值及其图形的拐点

提问时间:2021-02-18

答案
y= x / (1-x)^3,定义域:x≠1
y' = [ (1-x)^3*1 - x * 3(1-x)^2 * (-1) ] / (1-x)^6
= (2x+1)(1-x)^2 / (1-x)^6
= (2x+1) / (x-1)^4
x∈(-∞,-1/2)时,y'<0,单调减;
x∈(-1/2,1)时,y'>0,单调增;
x∈(1,+∞)时,y'>0,单调增.
x= -1/2时,最小值 = (-1/2) / (1+1/2)^3 = -16/27
y'' = [ (x-1)^4 * 2 - (2x+1) * 4 (x-1)^3 ] / (x-1)^8 = -6(x+1) / (x-1)^5
当x=-1时,y''=0,y=-1/(1+1)^3=-1/8,拐点坐标(-1,-1/8) 函数图象在该点由上凸转变为下凹.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.