题目
微分方程问题
求xy'^2-2yy'+x=0的通解
求xy'^2-2yy'+x=0的通解
提问时间:2021-02-18
答案
∵xy'^2-2yy'+x=0
∴y'=[y±√(y²-x²)]/x (解关于y'的方程)
=(y/x)±√[(y/x)²-1].(1)
设y/x=t,则y=xt,y'=t+xdt/dx
代入(1)得t+xdt/dx=t±√(t²-1)
==>xdt/dx=±√(t²-1)
==>dt/√(t²-1)=±dx/x
==>ln│t+√(t²-1)│=±ln│x│+ln│C│ (C是积分常数)
==>ln│[y+√(y²-x²)]/x│=±ln│x│+ln│C│
∴ln│[y+√(y²-x²)]/x│=ln│x│+ln│C│,或ln│[y+√(y²-x²)]/x│=-ln│x│+ln│C│
故原方程的通解是y+√(y²-x²)=Cx²,或y+√(y²-x²)=C (C是积分常数).
∴y'=[y±√(y²-x²)]/x (解关于y'的方程)
=(y/x)±√[(y/x)²-1].(1)
设y/x=t,则y=xt,y'=t+xdt/dx
代入(1)得t+xdt/dx=t±√(t²-1)
==>xdt/dx=±√(t²-1)
==>dt/√(t²-1)=±dx/x
==>ln│t+√(t²-1)│=±ln│x│+ln│C│ (C是积分常数)
==>ln│[y+√(y²-x²)]/x│=±ln│x│+ln│C│
∴ln│[y+√(y²-x²)]/x│=ln│x│+ln│C│,或ln│[y+√(y²-x²)]/x│=-ln│x│+ln│C│
故原方程的通解是y+√(y²-x²)=Cx²,或y+√(y²-x²)=C (C是积分常数).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1a²+b²/a-b怎么约分
- 2顶天立地的反义词是气贯长虹吗?
- 3银离子的价电子结构
- 45下列有关文学常识的表述,不正确的一项是
- 5请编写函数fun(),它的功能是:求出1到1000之内能被5或13整除、但不能同时被5和13整除的所有整数并将它们
- 6沿周长1200米环湖路跑步,同时从同一地同向跑12分钟后甲追上乙,甲与乙反向行,3分钟后相遇,甲跑多少米
- 7y=sinx+2cosx 周期
- 8若3.25+( )×1又1/3-2.5÷4又1/6=10.45,则括号中的数应为( )
- 9如图,一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm,边框的内外边缘所成的矩形相似吗?答:_.
- 10"电路中的电流与电压成正比,与电阻成反比"什么意思
热门考点