当前位置: > △ABC为正三角形,AB=2,P,Q分别为AB,AC上的点,且线段PQ将△ABC分为面积相等的两部分,设AP=x,AQ=z,PQ=y...
题目
△ABC为正三角形,AB=2,P,Q分别为AB,AC上的点,且线段PQ将△ABC分为面积相等的两部分,设AP=x,AQ=z,PQ=y
1,将y表示为x的函数,并求函数值遇和定义域
2,将z表示为x的函数,并求函数值遇和定义域

提问时间:2021-02-17

答案
因为APQ和ABC的面积比是1/2.所以AP*PQ/(AB*BC)=1/2
即xz=2*2/2=2.01
根据余弦定理知y^2=x^2+z^2-xz=x^2+z^2-2.y=根号(x^2+z^2-2)
1.y=根号(x^2+4/x^2-2).定义域是(1,2).值域是[根号2,根号3)
2.z=2/x.值域(1,2),定义域(1,2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.