当前位置: > 大一高数题:设f(x)在闭区间[0,1]上连续,f(0)=0,f(1)=1,证明:存在ξ∈(0,1),使得f(ξ-1/3)=f(ξ)-1/3....
题目
大一高数题:设f(x)在闭区间[0,1]上连续,f(0)=0,f(1)=1,证明:存在ξ∈(0,1),使得f(ξ-1/3)=f(ξ)-1/3.

提问时间:2021-02-17

答案
设F(x)=f(x-1/3)-f(x)+1/3F(1/3)=f(0)-f(1/3)+1/3=-f(1/3)+1/3F(2/3)=f(1/3)-f(2/3)+1/3F(1)=f(2/3)-f(1)+1/3=f(2/3)-2/3F(1/3)+F(2/3)=-f(2/3)+2/3 ,由介值性定理,至少存在a,(1/3《a《2/3),使:F(a)=(F(1/3)+F(2/3)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.