题目
已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1),(n≥2,n属于正整数),若数列{a(n+1)+入an}为等比数列.
1..求所有入值,并求数列{an}通项公式;
2.证:当k为奇数是,1/ak+1/a(k+1)
1..求所有入值,并求数列{an}通项公式;
2.证:当k为奇数是,1/ak+1/a(k+1)
提问时间:2021-02-16
答案
对于a[n+1]=p*a[n]+q*a[n-1]的形式
可以列出一个辅助的方程来化简数列 x2=px+q 两个解为x=x1,x=x2
于是原数列可以变为a[n+1]-x1*a[n]=x2(a[n]+x1*a[n-1])
(1)对于此题:x2=x+6 解x1=-2,x2=3,于是a[n+1]+2*a[n]=3(a[n]+2*a[n-1])
数列{a[n+1]+2a[n]}为等比数列
所以a[n+1]+2a[n]=5*3^n → a[n+1]-3^(n+1)=-2(a[n]-3^n)
很容易求出a[n]=3^n+2*(-2)^(n-1)
(2)
当n=1时,1/a1+1/a2=2/52时
1/ak+1/a(k+1)
=1/(3^k+2^k)+1/(3^(k+1)-2^(k+1))
=(4*3^n-2^n)/((3^n+2^n)*(3^(n+1)-2^(n+1)))
而3^(n+1)-2^(n+1)=(3-2)(3^n+3^(n-1)*2+……+3^p*2^(n-p)+……+2^n)
>(2²+2²+……+2²) (n+1个2²)
>3(n+1)
所以
1/ak+1/a(k+1)
可以列出一个辅助的方程来化简数列 x2=px+q 两个解为x=x1,x=x2
于是原数列可以变为a[n+1]-x1*a[n]=x2(a[n]+x1*a[n-1])
(1)对于此题:x2=x+6 解x1=-2,x2=3,于是a[n+1]+2*a[n]=3(a[n]+2*a[n-1])
数列{a[n+1]+2a[n]}为等比数列
所以a[n+1]+2a[n]=5*3^n → a[n+1]-3^(n+1)=-2(a[n]-3^n)
很容易求出a[n]=3^n+2*(-2)^(n-1)
(2)
当n=1时,1/a1+1/a2=2/52时
1/ak+1/a(k+1)
=1/(3^k+2^k)+1/(3^(k+1)-2^(k+1))
=(4*3^n-2^n)/((3^n+2^n)*(3^(n+1)-2^(n+1)))
而3^(n+1)-2^(n+1)=(3-2)(3^n+3^(n-1)*2+……+3^p*2^(n-p)+……+2^n)
>(2²+2²+……+2²) (n+1个2²)
>3(n+1)
所以
1/ak+1/a(k+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1my home is about 5 from my school,提问 ()()()your home from school.
- 2()犹如().把句子补充完整
- 3在一个比例中,两个外项的积是最小的质数,一个内项是七分之六,另一个内项是?
- 4选择泥泞的路,才会留下脚印.这句话的英文该怎么翻译?
- 5walk 可以是 VT,也可以是VI,
- 6为什么乙酸乙脂的制备时,需先加乙醇,再加浓硫酸和乙酸的混合液
- 7请给我一篇珍惜时间的小学英语作文.
- 8等物质的量的氢气和氦气在同温同压下具有相同的( ) A.体积 B.原子数 C.质量数 D.中子数
- 9关于英语的题目,根据句意和首字母的提示补权单词
- 10英语翻译:能够在天上飞翔一定是非常有趣的.
热门考点