当前位置: > 如图,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P是对角线AC上的个动点,则PE+PF的最小值是(  ) A.89 B.73 C.45 D.82...
题目
如图,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P是对角线AC上的个动点,则PE+PF的最小值是(  )
A.
89

B.
73

C. 4
5

D. 8
2

提问时间:2021-02-16

答案
过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,
∵四边形ABCD是正方形,
∴∠DAC=∠BAC=45°,
∵EE′⊥AC,
∴△AEE′是等腰三角形,
∴AE=AE′=3,
∵GF⊥AD,
∴GD=CF=1,
∴GE′=8-GD-AE′=8-3-1=4,
在Rt△GFE′中,GE′=4,GF=8,
∴E′F=
E′G2+GF2
=
42+82
=4
5

故选C.
过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,根据正方形的性质可知△AEE′是等腰三角形,AE′=3,GD=CF=2,由AD=8即可求出GE′的长,再由勾股定理即可求出E′F的长.

轴对称-最短路线问题;正方形的性质.

本题考查的是最短路线问题及正方形的性质,根据题意作出辅助线是解答此题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.