题目
数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(an)²+(an+1)²+(an)²]
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
提问时间:2021-02-16
答案
(1)原式整理,因解分解后,
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1小王要将一个数加上8,再除以2,但是他算成加上2,再除以8,结果等于4,那么正确的答案是( ).
- 2两个小数相乘,乘积四舍五人以后是22.5这两个数都只有一位小数,且整数部分都是4.请问:这两个数的乘积四舍五人前是多少?
- 3tom’s father doesn’t get up late in the morning的同义句
- 4两根钢管的长度相等,都不满1米.第一根用去13,第二根用去13米.哪一根剩下的长一些?( ) A.第一根 B.第二根 C.同样长
- 5请问这个烃怎么命名?
- 6几种英语说再见的句子有什么不同see you bye goodbye see you later so long see you tomorrow
- 7want(同义短句)
- 8一个英语造句 初二 简单
- 9三(1)班同学去公园划船,如果每条船坐4人,则少1条船;如果每条船坐6人,则多出4条船.公园里有多少条船?三(1)班有多少学生?
- 10在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的3/80,长跑与游泳的距离之差为8.5千米.求三项的总距离.
热门考点
- 1平面的向量AB-BC+DC-AD.
- 2用四氯化碳从碘的饱和水溶液中萃取碘,是先放碘还是先放四氯化碳
- 3米开朗琪罗的名言
- 4I`m very glad___(hear) that
- 5根据意思填词语:1.找事实在证明自己的观点的过程 2.失去勇气
- 64.44÷45/8+31/37÷25/111+36/37×411/25.
- 7将下列句子改为被动语态,急:1.why do you love the book?2my moher gives me some advise .
- 8超市运来橘子苹果梨一共330千克.橘子和苹果质量的比是5比6,梨的质量是苹果的3分之2.橘子比梨多多少
- 9已知i为虚数单位,计算(1+2i)(1-i)2=_.
- 10除数不变,被除数和商是怎样变化的