题目
由平的面围成的立体图形叫做多面体,有几个面,就叫做几面体.面与面的交线叫做棱,棱与棱的交点叫做顶点
由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体。三棱锥有四个面,所以三棱锥又叫四面体,正方体又叫做____面体,有五条侧棱的棱柱又叫做____面体。
(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填表:
多面体 V F E V+F–E
四面体 ( ) ( ) ( ) ( )
长方体 ( ) ( ) ( ) ( )
五棱柱 ( ) ( ) ( ) ( )
(2)猜想:由上面的探究,你能得到一个什么结论?
(3)验证:在课本的插图中再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数还是否满足上述关系。
(4)应用:(2)的结果对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式。根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?
由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体。三棱锥有四个面,所以三棱锥又叫四面体,正方体又叫做____面体,有五条侧棱的棱柱又叫做____面体。
(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填表:
多面体 V F E V+F–E
四面体 ( ) ( ) ( ) ( )
长方体 ( ) ( ) ( ) ( )
五棱柱 ( ) ( ) ( ) ( )
(2)猜想:由上面的探究,你能得到一个什么结论?
(3)验证:在课本的插图中再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数还是否满足上述关系。
(4)应用:(2)的结果对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式。根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?
提问时间:2021-02-16
答案
由平的面围成的立体图形又叫做多面体,有几个面,就叫做几面体.三棱锥有四个面,所以三棱锥又叫四面体,正方体又叫做(六)面体,有五条侧棱的棱柱又叫做(七)面体.(1)探索:如果把一个多面体的顶点数记为V,棱数记为E,...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1一块干土盛进水里,有气泡冒出,这气泡是什么?
- 2My guandfather has many intersting stories对many intersting stories提问
- 3怎样解答语文阅读理解题才能得满分?
- 4长江三角洲包括那些城市
- 5英语翻译
- 6在盛热水的茶杯中有一片茶叶、茶叶上附着两个体积均是3mm^3的气泡 此时它恰好处于悬浮状态,若在茶杯上盖紧盖子,会发现这片茶叶将(上浮?下沉?悬浮?)
- 7养成一种健康的生活方式是非常困难的.________ very difficult _______ have a healthy lifestyle.
- 8用丝带包扎一个正方体礼品盒,接头处用30厘米,包扎一个礼品和至少需要多长的丝带?高是30厘米
- 9中心极限定理的误差是多少.例如随着N的增大.二项分布越趋进于正态分布.他们之间误差随着N的增大误差是什么?
- 10铀238半衰期问题!
热门考点
- 1求下列椭圆与双曲线的方程:1,经过两点A(0,2)B(2分之1,根号3)的椭圆方程.2,求与双曲线x^2-2y^2=2有公共渐近线,且过M(2,-2)的双曲线
- 2一分钟等于多少ms?
- 3答对一题得4分.不答或答错扣2分,某同学参加比赛得了88分,他需要答对几道题
- 4根号二分之三乘以根号十五分之八等于多少 是二根号五分之一还是五分之二根号五
- 550除以2.2
- 6一个圆柱的体积是5立方分米,底面积是15平方分米,它的高是( )分米;与它等底等积的圆锥的高是( )分米?
- 7OK.I want to book 10 standard rooms with two single beds and one room with one single bed.
- 8小明去书店买书,如果买2本,还剩1.8元,如果买同样的4本,差2.4 元,小明有?元
- 9μm是微米,μ是什么符号?
- 10当两个地点经度差为180度时·如何判断东西方向