当前位置: > 设0...
题目
设0<θ<π/2,若曲线x²sinθ-y²cosθ=1和x²cosθ+y²sinθ=1有4个不同的交点,试确定θ的取值范围

提问时间:2021-02-15

答案
∵0<θ<π/2,∴-π/4<θ-π/4<π/4,且sinθ>0、cosθ>0.
∴由x^2sinθ-y^2cosθ=1,得:x^2-y^2cotθ=cscθ,
 由x^2cosθ+y^2sinθ=1,得:x^2+y^2tanθ=secθ.
∴y^2(tanθ+cotθ)=secθ-cscθ,
∴y^2(sinθ/cosθ+cosθ/sinθ)=1/cosθ-1/sinθ,
∴y^2[(sinθ)^2+(cosθ)^2]=sinθ-cosθ,
∴y^2=sinθ-cosθ=√2[sinθcos(π/4)-cosθsin(π/4)]=√2sin(θ-π/4).
∵x^2sinθ-y^2cosθ=1、x^2cosθ+y^2sinθ=1有四个不同的交点,
∴y^2=√2sin(θ-π/4)>0,而-π/4<θ-π/4<π/4,∴0<θ-π/4<π/4,∴π/4<θ<π/2.
∴满足条件的θ的取值范围是(π/4,π/2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.