当前位置: > 用基本不等式证明:...
题目
用基本不等式证明:
已知M(cosa,sina)在直线x/a+y/b=1上,求证:(1/a)^2+(1/b)^2≥1
(怎么用基本不等式求解?貌似要用到不常用的不等式)

提问时间:2021-02-13

答案
∵M(cosa,sina)在直线x/a+y/b=1上
∴(cosa)/a+(sina)/b=1
∵(1/a)^2+(1/b)^2
=(sin^2a+cos^2a)/a^2+(sin^2a+cos^2a)/b^2
=(sin^2a)/a^2+(cos^2a)/b^2+(cos^2a)/a^2+(sin^2a)/b^2
≥(2sinacosb)/ab+(cos^2a)/a^2+(sin^2a)/b^2
=[(cosa)/a+(sina)/b]^2=1
∴(1/a)^2+(1/b)^2≥1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.