当前位置: > 高一 数学 数列问题 请详细解答,谢谢! (30 14:47:34)...
题目
高一 数学 数列问题 请详细解答,谢谢! (30 14:47:34)
数列{a1}=1,1/2an+1=1/2an+1
若a1a2+a2a3+…+anan+1>16/33,求n的取值范围

提问时间:2021-02-13

答案
请问1/2an+1=1/2an+1是不是an=a(n+1)*(1+2an)?如果是的话,就是如下解决方法:an=a(n+1)*(1+2an)=a(n+1)+ 2a(n+1)*an,两端同除以a(n+1)*an,得到 1/a(n+1) = 1/an + 2 故数列1/an是等差数列,且1/a1=1,所以1/an=(2n-1),an= 1/(2n-1).因此a1a2+a2a3+……+anan+1 = 1/(1*3)+1/(3*5)+...+1/((2n-1)(2n+1)) =1/2 * [1/1-1/3 + 1/3-1/5 +...+1/(2n-1)-1/(2n+1)] =1/2 * [1-1/(2n+1)]=n/(2n+1),若a1a2+a2a3+……+anan+1>16/33,那么就有n/(2n+1)>16/33,所以33n>16(2n+1),求得n>16.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.