当前位置: > 圆内接四边形到ABCD中,对角线AC垂直BD、OE垂直AD于E,求证:BC=2OE...
题目
圆内接四边形到ABCD中,对角线AC垂直BD、OE垂直AD于E,求证:BC=2OE

提问时间:2021-02-13

答案
连接OC并延长交圆O于F点,连接BF,再过O做BC的垂线,垂足为G,则∠CBF=90°∠F=∠BAC,GC=GB=1/2BC
∠BCF+∠F=90°
因AC⊥BD,所以∠BAC+∠ABD=90°
所以∠BCF=∠ABD
又因为OE⊥AD,所以∠AOE=1/2AD弧的度数,∠ABD=1/2AD弧的度数,所以∠ABD=∠AOE
所以∠BCF=∠AOE
又因为OA=OC,∠OGC=∠OEA=90°,所以△OEC≌△AEO,OE=GC=1/2BC
BC=2OE
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.