题目
如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.
提问时间:2021-02-12
答案
(1)证明:如图1
∵四边形ABCD是梯形,AD∥BC,AB=CD,
∴四边形ABCD是等腰梯形,
∴∠ABC=∠DCB.
又∵BC=CB,AB=DC,
∴△ABC≌△DCB.
∴∠1=∠2.
又∵GE∥AC,
∴∠2=∠3.
∴∠1=∠3.
∴EG=BG.
∵EG∥OC,EF∥OB,
∴四边形EGOF是平行四边形.
∴EG=OF,EF=OG.
∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB
(2)方法1,如图2,已知矩形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G
求证:四边形EFOG的周长等于2OB.
方法2:如图3,已知正方形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G
求证:四边形EFOG的周长等于2OB.
∵四边形ABCD是梯形,AD∥BC,AB=CD,
∴四边形ABCD是等腰梯形,
∴∠ABC=∠DCB.
又∵BC=CB,AB=DC,
∴△ABC≌△DCB.
∴∠1=∠2.
又∵GE∥AC,
∴∠2=∠3.
∴∠1=∠3.
∴EG=BG.
∵EG∥OC,EF∥OB,
∴四边形EGOF是平行四边形.
∴EG=OF,EF=OG.
∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB
(2)方法1,如图2,已知矩形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G
求证:四边形EFOG的周长等于2OB.
方法2:如图3,已知正方形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G
求证:四边形EFOG的周长等于2OB.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1几何线段证明题:已知:点C是线段AB上一点,且3AC=2AB,D是AB的中点,E是CB的中点,DE=6 ,求AB的长.
- 2在四年级应用题里有大约的字样要用约等于有时不用怎么判断
- 3从一乘到一百等于几
- 4when Jacob was 16,his father died suddenly,leaving him three sisiter and four brothers------------
- 5高中物理 很简单!热学 分子运动论 在线等!
- 6失败的滋味 初中作文 急!
- 7writing作名词时可不可数
- 8有100件产品,其中次品3件,从中认取3件,恰有一件正品的概率?至少有一件是次品的概率?
- 9in front of their house ------two tall trees A be B was C are
- 10在等差数列中{an}中,a1=a,a2=a+2,a3=2a-2,求它的通项公式
热门考点