当前位置: > 如图,在△ABC中.∠BAC=45°.高AD与CE交于点H,AH=2CD,求∠B的度数··...
题目
如图,在△ABC中.∠BAC=45°.高AD与CE交于点H,AH=2CD,求∠B的度数··

提问时间:2021-02-12

答案
证明:CE垂直AB,∠BAC=45°,则AE=CE.
又AD垂直BC,则:∠EAH=∠BCE(均为角B的余角);
又∠AEH=∠CEB=90度.故⊿AEH≌⊿CEB(ASA),得AH=BC.
AH=2CD,则BC=2CD,得CD=BD,即AD为BC的垂直平分线.
所以,AB=AC,∠B=(180°-∠BAC)/2=67.5°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.