题目
如何证明奇数阶反对称行列式为零
在网上搜了答案 可是有些看不懂 为什么会有(-1)^n?
设A是n(奇数)阶反对称方阵
则 A' = - A
所以 |A| = |A'| = |-A| = (-1)^n|A| = -|A|.
所以 |A| = 0.
在网上搜了答案 可是有些看不懂 为什么会有(-1)^n?
设A是n(奇数)阶反对称方阵
则 A' = - A
所以 |A| = |A'| = |-A| = (-1)^n|A| = -|A|.
所以 |A| = 0.
提问时间:2021-02-12
答案
是这样的,反对称阵每个元素都是在对称后都是其相反数
设A=(a1,a2,...,an) (注意a1-an是列向量)
A^T=(-a1,-a2,...,-an)^T (注意a1-an是列向量,转置后是行向量)
这样|A^T|=|(-a1,-a2,...,-an)^T|=(-1)^n|(a1,a2,...,an)|=(-1)^n|A| = -|A|.
所以 |A| = 0.
设A=(a1,a2,...,an) (注意a1-an是列向量)
A^T=(-a1,-a2,...,-an)^T (注意a1-an是列向量,转置后是行向量)
这样|A^T|=|(-a1,-a2,...,-an)^T|=(-1)^n|(a1,a2,...,an)|=(-1)^n|A| = -|A|.
所以 |A| = 0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点