当前位置: > a,b都是正实数,且a+b=a2+b2-ab,则ab的最大值是...
题目
a,b都是正实数,且a+b=a2+b2-ab,则ab的最大值是

提问时间:2021-02-11

答案
为方便,记y=ab,x=a+b,须求y的最大值
则原等式化为:
x=(a+b)^2-3ab=x^2-3y
即y=(x^2-x)/3
因为a+b>=2√(ab),当且仅当a=b时取等号,即有:
y
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.