当前位置: > 正方形ABCD中,点E在BC上,点F在CD上,且角EAF为45°,AH⊥EF,垂足为H,求证:AH等于AB...
题目
正方形ABCD中,点E在BC上,点F在CD上,且角EAF为45°,AH⊥EF,垂足为H,求证:AH等于AB

提问时间:2021-02-10

答案
证明;延长CB到M,使BM=DF.连接AM.
又AB=AD;∠ABM=∠D=90°.则:⊿ABM≌ΔADF(SAS),得:AM=AF;∠BAM=∠DAF.
∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠EAF=45°.
即∠MAE=∠FAE;又AE=AE.则:⊿MAE≌ΔDAE(SAS).
又AH⊥EF,故AH=AB.(全等三角形对应边上的高相等)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.