题目
已知数列{an}为非常数等差数列,cn=(an)^2-[a(n+1)]^2,n属于N*
(1)证明{cn}也是等差数列
(2)如果已知a1+a3+a5+a7+……+a25=130,a2+a4+a6+a8+……+a26=130-13k,(k是常数)写出{cn}的通项公式
(3)在(2)中,设数列{cn}前n项和是Sn,在n=4和n=5同时取得最大值,求k的值
望“我不是他舅”解决.今晚7点前,
(1)证明{cn}也是等差数列
(2)如果已知a1+a3+a5+a7+……+a25=130,a2+a4+a6+a8+……+a26=130-13k,(k是常数)写出{cn}的通项公式
(3)在(2)中,设数列{cn}前n项和是Sn,在n=4和n=5同时取得最大值,求k的值
望“我不是他舅”解决.今晚7点前,
提问时间:2021-02-09
答案
1.
Cn=(An)^2-(A(n+1))^2=(An-A(n+1))(An+A(n+1))
设{An}公差为d
Cn=-d(An+A(n+1))
C(n+1)-Cn
=-d(A(n+1)+A(n+2))-(-d)(An+A(n+1))
=-d(A(n+2)-An)
=-2d^2
是一个常数
{Cn}也是等差数列
2.
(A2+A4+……+A26)-(A1+A3+……+A25)
=(A2-A1)+(A4-A3)+……+(A26-A25)
=13d=130-13k-130
d=-k
A1、A3、……A25也组成等差数列
A1+A3+……+A25=(A1+A25)×13/2=2A13×13/2=13A13=130
A13=10
A1=A13-12d=10+12k
A2=A13-11d=10+11k
C1=(A1)^2-(A2)^2=(10+12k)^2-(10+11k)^2=k(23k+20)
Cn=k(23k+20)+(n-1)(-2k^2)=(25-2n)k^2+20k
3.
S5=S4
C5=S5-S4=0
C5=15k^2+20k=0
d≠0 k≠0
k=-4/3
Cn=(An)^2-(A(n+1))^2=(An-A(n+1))(An+A(n+1))
设{An}公差为d
Cn=-d(An+A(n+1))
C(n+1)-Cn
=-d(A(n+1)+A(n+2))-(-d)(An+A(n+1))
=-d(A(n+2)-An)
=-2d^2
是一个常数
{Cn}也是等差数列
2.
(A2+A4+……+A26)-(A1+A3+……+A25)
=(A2-A1)+(A4-A3)+……+(A26-A25)
=13d=130-13k-130
d=-k
A1、A3、……A25也组成等差数列
A1+A3+……+A25=(A1+A25)×13/2=2A13×13/2=13A13=130
A13=10
A1=A13-12d=10+12k
A2=A13-11d=10+11k
C1=(A1)^2-(A2)^2=(10+12k)^2-(10+11k)^2=k(23k+20)
Cn=k(23k+20)+(n-1)(-2k^2)=(25-2n)k^2+20k
3.
S5=S4
C5=S5-S4=0
C5=15k^2+20k=0
d≠0 k≠0
k=-4/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1资本主义经济格局变化
- 2who likes cooking in your family
- 3买来的45度酒精指的是100体积的白酒含有45体积的纯酒精,若不计体积的变化.求45度白酒的密度?
- 4小明在做练习册上的一道多项式除以单项式的习题时,一不小心一滴墨水污染了这道习题,只看见了第一项
- 5f(x)=(x-1)根号1+x/1-x是奇函数还是偶函数?
- 6急求!诗经采薇里的:行道迟迟,载饥载渴.我心伤悲,莫知我哀 的诗意啊!悬赏:10
- 7已知函数y=sin^2x+√3sin^2xcosx+2cos^2x求函数y的最小正周期和单调增区间
- 8墙角的花!你孤芳自赏时,天地便小了.作者是谁?作简要评析如题
- 9请帮我想几个语文作文的题目
- 10七年级下册数学数人教版的14业第2题题目是什么?数学书没带,明天要交,2013版
热门考点