当前位置: > 如图,△ABC的高AD为3,BC为4,直线EF‖BC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF...
题目
如图,△ABC的高AD为3,BC为4,直线EF‖BC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
⑴求线段AG(用x表示);
⑵求y与x的函数关系式,并求x的取值范围.

提问时间:2021-02-07

答案
①∵EF‖BC
∴AG:AD=EF:BC
∴AG=EF/BC×AD=x/4×3=3x/4
②一当点P在BC外边时
等腰直角△PEF的高设为h=1/2×EF=x/GD=AD-AG=3-3x/4
那么:被BC分出的小△与△PEF的面积之比为(h-GD)^2:h^2=(5x/4-3)^2:(x/2)^2等腰直角△PEF为1/2×EF×h=x^2/4
则被BC分出的小△为x^2/4×(5x/4-3)^2/(x/2)^2=(5x/4-3)^2
△PEF与四边形BCEF重合部分的面积:△PEF的面积-被BC分出的小△的面积
即y=x^2/4-(5x/4-3)^2=(-21/16)x^2-(15/2)x-9
当点P在BC上时,h=GD,即x/2=3-3x/4,x=12/5
则当点P在BC外边时x>12/5
如果EF与BC重合,就没有重合面积了,所以x
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.