当前位置: > 函数f(x)=x2-2mx-3在区间[1,2]上具有单调性,则m的取值范围为_....
题目
函数f(x)=x2-2mx-3在区间[1,2]上具有单调性,则m的取值范围为______.

提问时间:2021-02-05

答案
解法一:∵f(x)=x2-2mx-3=(x-m)2-3-m2的图象是一条抛物线,开口向上,对称轴是x=m,对称轴左侧递减,右侧递增.
所以当m≤1时,函数f(x)在区间[1,2]上递增.
当m≥2时,函数f(x)在区间1,2]上递减.
解法2:∵函数y=x2-2mx+3在区间[1,2]上具有单调性,
∴原函数的导函数在区间[1,2]上要么是增函数要么是减函数,即
原函数的导函数区间[1,2]上所有值同号,
∴(2-2m)(4-2m)≥0,
求得答案为:m≤1或m≥2
故答案为:m≤1或m≥2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.