当前位置: > 在△ABC中,角A,B,C的对边为a,b,c且(a+b+c)(a-b+c)=ac. (Ⅰ)求B的值; (Ⅱ)若b=27,S△ABC=23,求a,c的值....
题目
在△ABC中,角A,B,C的对边为a,b,c且(a+b+c)(a-b+c)=ac.
(Ⅰ)求B的值;
(Ⅱ)若b=2
7
S△ABC=2
3
,求a,c的值.

提问时间:2021-02-05

答案
(Ⅰ)由(a+b+c)(a-b+c)=ac,
整理得(a+c)2-b2=ac,
即a2+c2-b2=-ac,
∴cosB=
a2+c2b2
2ac
=
−ac
2ac
=-
1
2

∵B∈(0,π),
∴B=
3

(Ⅱ)由(Ⅰ)可知sinB=
3
2

∵S△ABC=2
3

1
2
acsinB=
1
2
ac×
3
2
=2
3
,即ac=8①,
∵b=2
7
,cosB=-
1
2

∴由余弦定理得:b2=a2+c2-2accosB,
即28=a2+c2+ac,即(a+c)2-ac=28,
把ac=8代入可得:(a+c)2-8=28,
即(a+c)2=36,
∴a+c=6②,
联立①②可解得a=2,c=4或a=4,c=2.
(Ⅰ)已知等式化简整理后得到关系式,利用余弦定理表示出cosB,将得出的关系式代入求出cosB的值,即可确定出B的度数;
(Ⅱ)利用三角形面积公式表示出三角形ABC面积,将sinB,以及已知面积代入求出ac的值,再利用余弦定理列出关系式,变形后将ac的值代入求出a+c的值,联立即可求出a与c的值.

余弦定理.

此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.