题目
已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系
提问时间:2021-02-04
答案
f(x)=loga∣ax+b∣是偶函数,则有:
f(-x)= f(x) loga∣-ax+b∣=loga∣ax+b∣
∣-ax+b∣=∣ax+b∣ 所以b=0
此时f(x)=loga∣ax|
a是底数大于0,∣ax|在(0,+∞)上时增函数,
根据复合函数“同增异减”的原则,底数a必须大于1.
因为f(b-2)=f(-2)=f(2) 且a+1>2
又f(x) 在(0,+∞)上单调递增,所以f(a+1)> f(2)
即f(a+1) > f(b-2)
f(-x)= f(x) loga∣-ax+b∣=loga∣ax+b∣
∣-ax+b∣=∣ax+b∣ 所以b=0
此时f(x)=loga∣ax|
a是底数大于0,∣ax|在(0,+∞)上时增函数,
根据复合函数“同增异减”的原则,底数a必须大于1.
因为f(b-2)=f(-2)=f(2) 且a+1>2
又f(x) 在(0,+∞)上单调递增,所以f(a+1)> f(2)
即f(a+1) > f(b-2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1求格列佛游记300字摘抄赏析,
- 2英语翻译
- 310公斤的煤气罐,高度是多少?
- 4看一篇短文(如下):
- 5F1F2是双曲线x2/9-y2/16=1的焦点,点M在双曲线上,且MF1*MF2=0,(是向量乘)则△MF1F2= 在线等答案
- 6翻译:睡觉前一定要把煤气关掉,否则要出事故的.(be sure to)
- 7平面上有两点A(-1,0),B(1,0),点P在圆周(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时点P的坐标.
- 8飞鸟的悲哀 ,你觉得飞鸟的悲哀是什么?谈谈你的看法
- 9修一条公路,第一天修了2分之1千米,第二天比第一天少修8分之1千米,两天一共修了多少千米.
- 10如图1,在平行四边形ABCD中,AC=CD. (1)求证:∠D=∠ACB; (2)若点E、F分别为边BC、CD上的两点,且∠EAF=∠CAD.(如图2) ①求证:△ADF∽△ACE; ②求证:AE=E
热门考点