当前位置: > a1=a2=1,an+1=an+an-1,n=2,3,...xn= an+1/an.证明数列{xn}收敛于((根号5)+1)/2...
题目
a1=a2=1,an+1=an+an-1,n=2,3,...xn= an+1/an.证明数列{xn}收敛于((根号5)+1)/2

提问时间:2021-02-04

答案
an是斐波那契数列a[n+1]=an+a[n-1]a[n+1]/a[n]=1+a[n-1]/a[n]若的极限x[n]存在,收敛则lim[n->∞](a[n+1]/a[n])=lim[n->∞](a[n]/a[n-1])=xn所以xn=1+1/xn即xn^2-xn-1=0xn=(1+√5)/2 (负数略)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.