当前位置: > 已知在平面直角坐标系内,O为坐标原点,A、B是x轴上的两点,点A在点B的左侧,二次函数y=ax2+bx+c(a≠0)的图象经过点A、B,与y轴相交于点C. (1)如图情况下:a、c的符号之间有何关系?...
题目
已知在平面直角坐标系内,O为坐标原点,A、B是x轴上的两点,点A在点B的左侧,二次函数y=ax2+bx+c(a≠0)的图象经过点A、B,与y轴相交于点C.
(1)如图情况下:a、c的符号之间有何关系?
(2)如果线段OC的长度是线段OA、OB长度的比例中项,试证a、c互为倒数;
(3)在(2)的条件下,如果b=-4,AB=4
3
,求a、c的值.

提问时间:2021-02-04

答案
(1)由图可知:当抛物线开口向下,即a<0时,c<0;当抛物线开口向上,即a>0时,c>0;因此a、c同号.(2)设A(m,0),B(n,0),抛物线的解析式y=ax2+bx+c中,令y=0,得:ax2+bx+c=0,故OA•OB=mn=ca;而OC2=c...
(1)此题较简单,根据A、B点的位置即可判断出当抛物线开口向下时,函数图象与y轴交于负半轴,当抛物线开口向上时,函数图象与y轴交于正半轴,即a、c同号.
(2)当CO2=OA•OB时,可用c表示出OC,用a、c表示出OA•OB,代入上式即可求得a、c是否为倒数关系.
(3)此题可沿用(2)的思路,首先将b值代入抛物线的解析式中,可依据韦达定理表示出AB的长,几何a、c的倒数关系,即可求得a、c的值.

二次函数综合题.

此题主要考查的是二次函数图象与系数的关系以及根与系数的关系,难度适中.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.