当前位置: > 设函数y=sin^2x-2acosx+3cos^2x-2a-2的最小值为f(a) 用a表示fa 确定...
题目
设函数y=sin^2x-2acosx+3cos^2x-2a-2的最小值为f(a) 用a表示fa 确定
确定能使fa=1/2的值,对a求y最大值

提问时间:2021-02-04

答案

y=sin^2x-2acosx+3cos^2x-2a-2
=sin^2x-2acosx+cos^2x+2cos^2x-2a-2
=1--2acosx+2cos^2x-2a-2
=2cos^2x-2acosx-2a-1
=2(cos^2x-acosx+1/4a ² )-1/2a ² -2a-1
=2(cosx-1/2a) ² -1/2a ² -2a-1
最小值为f(a) 则
f(a)= -1/2a ² -2a-1
-1/2a ² -2a-1=1/2
-a ² -4a-2=1
-a ² -4a-3=0
a ² +4a+3=0
(a+1)(a+3)=0
a=-1或者
a=-3(当a=-3时,原函数cosx-1/2a取不到0,也就是说不是最小值,故舍去)
所以y=2(cosx-1/2a) ² -1/2a ² -2a-1
=2(cosx+1/2)² -1/2+2-1
ymax =2--1/2+2-1=5/2
y最大值为 5/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.