题目
∫∫(D)arctan y/x dxdy. D:1≤x^2+y^2≤4,y≥0,y≤x
x=rcosθ y=rsinθ ∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ 其中D':1<=r<=2,0<=θ<=π/4 那么 ∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ= ∫(0->π/4)∫(1->2)θr dr dθ= ∫(0->π/4) θ/2*r^2|(1->2) dθ= ∫(0->π/4) θ/2*(4-1) dθ= 3/4*θ^2|(0->π/4)=3π^2/64 其中∫∫(D')arctan(sinθ/cosθ)rdrdθ= ∫(0->π/4)∫(1->2)θr dr dθ是怎么化简的
x=rcosθ y=rsinθ ∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ 其中D':1<=r<=2,0<=θ<=π/4 那么 ∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ= ∫(0->π/4)∫(1->2)θr dr dθ= ∫(0->π/4) θ/2*r^2|(1->2) dθ= ∫(0->π/4) θ/2*(4-1) dθ= 3/4*θ^2|(0->π/4)=3π^2/64 其中∫∫(D')arctan(sinθ/cosθ)rdrdθ= ∫(0->π/4)∫(1->2)θr dr dθ是怎么化简的
提问时间:2021-02-04
答案
∫∫(D')arctan (sinθ/cosθ)rdrdθ= ∫∫(D')arctan(tan θ)rdrdθ = ∫∫(D') θrdrdθ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1用分析法证明一道题、
- 2小学四年级上册语文知识与能力训练第52页的课堂练习第二题
- 3下列说法正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形 D.平面α和平面β有不同在一条直线上的三个交点
- 4已知f(x)的定义域为R 且当其定义域为R时f(m+x)=f(m-x)恒成立若函数y=log2(|ax-1|)的图像的对称轴是x=2
- 5拿破仑的历史评价?
- 6the most popular way of getting to school与the most popular means of getting to school的区别
- 7化学→氢氧化钡中滴加硫酸氢铵至刚好沉淀完全离子方程式
- 8tel缩写词的含义
- 9英语翻译
- 10描写冬天景色的诗句有哪些?
热门考点