当前位置: > 在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=1/2DC,DC=3BC,E为PD中点. (1)求证:AE∥平面PBC; (2)求证:AE⊥平面PDC; (3)求平面P...
题目
在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=
1
2

提问时间:2021-02-04

答案
(1)证明:取PC的中点为F,连接EF,则EF为△PDC的中位线,即EF平行且等于
1
2
DC.
又∵AB∥CD,
∴AB平行且等于EF,
∴AE∥BF,
又∵BF⊂平面PBC,
∴四边形AEFB为矩形,
∴AE∥平面PBC.(3分)
(2)证明:∵△PBC为正三角形,F为PC的中点,
∴BF⊥PC
又EF⊥PC,EF∩BF=F,
∴PC⊥平面AEFB,AE⊥PC;
由(1)知AE⊥EF,EF∩PC=F,
∴AE⊥平面PDC.(7分)
(3)延长CB交DA于B/,连接PB/,设BC=a,
∵AB=
1
2
DC,
∴BB/=BP=a,取B/P的中点为H,连接AH,BH,则BH⊥B/P,由三垂线定理知,AH⊥B/P,
∴∠AHB为平面PAD与平面PBC所成锐二面角的平面角.(9分)
在Rt△AHB中,AB=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.