当前位置: > 求函数f(x)=∫【0到x】t(t-1)dt的极值点xo...
题目
求函数f(x)=∫【0到x】t(t-1)dt的极值点xo

提问时间:2021-02-03

答案
f(x)=∫{t=0→x} t(t-1)dt=x³/3 -x²/2;
f'(x)=x(x-1),由 f'(x)=0 可解得:极大值点 x1=0,极小值点 x2=1;
极大值:f(0)=0;极小值 f(1)=1/3 -1/2=-1/6;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.