当前位置: > AB都是正交矩阵,证明A+B也是 能不能用这种证明方法...
题目
AB都是正交矩阵,证明A+B也是 能不能用这种证明方法
有一个定理是,实对称矩阵A正定的充分必要条件是存在可逆矩阵C使得C'AC=I,即A合同于单位矩阵.然后就是由题有C'AC=I ,C'BC=I ,C'(A+B)C=C'AC+C'BC=I ..所以得证 这种方法可以吗?括号里的可以拆开吗?

提问时间:2021-02-03

答案
括号里的可以拆开,是矩阵乘法对加法的分配律
但问题出在对A,B的C不一定相同!
用定义证简单.对X≠0,由A,B正定知 X^TAX>0,X^TBX>0.
所以 X^T(A+B)X = X^TAX + X^TBX > 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.