题目
如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
提问时间:2021-02-02
答案
PC与PD相等.理由如下:
过点P作PE⊥OA于点E,PF⊥OB于点F.
∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,
∴PE=PF(角平分线上的点到角两边的距离相等)
又∵∠AOB=90°,∠PEO=∠PFO=90°,
∴四边形OEPF为矩形,
∴∠EPF=90°,
∴∠EPC+∠CPF=90°,
又∵∠CPD=90°,
∴∠CPF+∠FPD=90°,
∴∠EPC=∠FPD=90°-∠CPF.
在△PCE与△PDF中,
∵
,
∴△PCE≌△PDF(ASA),
∴PC=PD.
过点P作PE⊥OA于点E,PF⊥OB于点F.
∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,
∴PE=PF(角平分线上的点到角两边的距离相等)
又∵∠AOB=90°,∠PEO=∠PFO=90°,
∴四边形OEPF为矩形,
∴∠EPF=90°,
∴∠EPC+∠CPF=90°,
又∵∠CPD=90°,
∴∠CPF+∠FPD=90°,
∴∠EPC=∠FPD=90°-∠CPF.
在△PCE与△PDF中,
∵
|
∴△PCE≌△PDF(ASA),
∴PC=PD.
先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.
角平分线的性质;全等三角形的判定与性质.
本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1欲问行人去那边?眉眼盈盈处.的意思
- 2把多项式-2x^3+8x分解因式,正确的( )a.-2x(x^2-4) b.(x^2+4) c.-2x(x+2)(x-2) d.2x(x-2)(x+2)
- 3英语是世界上使用最广泛的语言之一.要翻译,
- 4∫tan²xdx
- 5A和B都是自然数,且11分之A加3分之B=33分之17,那么A+B=() A.14、B.3、C.13
- 6已知f:A →B是从集合A到集合B的一个映射,其中A=B=【(x,y)|x,y∈R】,若f:(x,y)→(x+y,xy).
- 7九年级的完形填空 We have an English Corner in our classroom.Every morn……
- 8she has lived here since ten years判断正误,错的改过来
- 9青蛙与鸭子共有头七十个,腿二百条,青蛙比鸭子少百分之几?鸭子比它们的总数少百分之几?
- 10用friend,how,weekend,your,his,does,spend连词成句