当前位置: > 不等式(1)...
题目
不等式(1)
设a,b,c>0.求证:
a/b+b/c+c/a ≥(c+a)/(c+b)+(a+b)/(a+c)+(b+c)/(b+a)

提问时间:2021-02-02

答案
(a/b+b/c+c/a)²
≥ (a/b+b/c+c/a)* 4( ab/(b+c)² + bc/(c+a)² + ca/(a+b)²)
≥ 4[a/(b+c)+b/(c+a)+c/(a+c)]²
a/b+b/c+c/a ≥2 [a/(b+c)+b/(c+a)+c/(a+c)]
≥(c+a)/(c+b)+(a+b)/(a+c)+(b+c)/(b+a)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.