当前位置: > 设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1...
题目
设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1

提问时间:2021-02-01

答案
AA*=|A|E
r(A)=n-1,说明|A|=0
因此
AA*=0
于A*的列向量为齐次方程AX=0的解向量
从而r(A*)=1
总之r(A*)=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.