题目
bn=a1+2a2+3a3+4a4+……+nan若an是等差数列,则bn=?
提问时间:2021-02-01
答案
数列{an}是正项等差数列,若bn=(a1+2a2+3a3+…+nan)/(1+2+3+…+n),则数列{bn}也为 等差数列
设an公差为d,则
bn=(a1+2a2+3a3+…+nan)/(1+2+3+…+n)
=2(a1+2a2+3a3+…+nan)/n(n+1)
=2(a1+2(a1+d)+3(a1+2d)+…+n(a1+(n-1)d)/n(n+1)
=2{(a1+2a1+3a1+…+na1)+[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
=2{(n(n+1)a1/2)+[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
={(n(n+1)a1)+2[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
=a1+2[1*2+2*3+3*4+…+(n-1)n]d/n(n+1)
=a1+2[1+2+3+…+n-1+1^2+2^2+3^2+…+(n-1)^2]d/n(n+1)
=a1+2(n-1)n(n+1)d/3n(n+1)
=a1+(n-1)2d/3
即是bn是以a1为首数,2d/3为公差的等差数列,证毕.
bn=a1+2a2+3a3+…nan/1+2+3…+n
b(n+1)=[a1+2a2+3a3+…nan+(n+1)a(n+1)]/[1+2+3…+n+(n+1)]
[n(n+1)/2]bn=a1+2a2+3a3+…nan ①
[(n+1)(n+2)/2]b(n+1)=a1+2a2+3a3+…nan+(n+1)a(n+1) ②
②-①得
[(n+1)(n+2)/2]b(n+1)-[n(n+1)/2]bn=(n+1)a(n+1)
两边同时消去(n+1)得
a(n+1)=[(n+2)/2]b(n+1)-(n/2)bn③
an=[(n+1)/2]bn-[(n-1)/2]b(n-1) ④
③-④得a(n+1)-an=[(n+1)/2]b(n+1)+1/2b(n+1)-[(n+1)/2]bn-[(n-1)/2]bn+[(n-1)/2]b(n-1)-1/2bn
=[(n+1)/2][b(n+1)-bn]+1/2[b(n+1)-bn]-[(n-1)/2][bn-b(n-1)]
又{bn}为等差数列,设公差为d
则a(n+1)-an=[(n+1)/2]d+1/2*d-[(n-1)/2]d
=3/2d
所以{an}是公差为3/2d的等差数列
注:此中的an,bn,a(n+1),b(n+1)均是数列中的项
设an公差为d,则
bn=(a1+2a2+3a3+…+nan)/(1+2+3+…+n)
=2(a1+2a2+3a3+…+nan)/n(n+1)
=2(a1+2(a1+d)+3(a1+2d)+…+n(a1+(n-1)d)/n(n+1)
=2{(a1+2a1+3a1+…+na1)+[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
=2{(n(n+1)a1/2)+[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
={(n(n+1)a1)+2[1*2+2*3+3*4+…(n-1)n]d}/n(n+1)
=a1+2[1*2+2*3+3*4+…+(n-1)n]d/n(n+1)
=a1+2[1+2+3+…+n-1+1^2+2^2+3^2+…+(n-1)^2]d/n(n+1)
=a1+2(n-1)n(n+1)d/3n(n+1)
=a1+(n-1)2d/3
即是bn是以a1为首数,2d/3为公差的等差数列,证毕.
bn=a1+2a2+3a3+…nan/1+2+3…+n
b(n+1)=[a1+2a2+3a3+…nan+(n+1)a(n+1)]/[1+2+3…+n+(n+1)]
[n(n+1)/2]bn=a1+2a2+3a3+…nan ①
[(n+1)(n+2)/2]b(n+1)=a1+2a2+3a3+…nan+(n+1)a(n+1) ②
②-①得
[(n+1)(n+2)/2]b(n+1)-[n(n+1)/2]bn=(n+1)a(n+1)
两边同时消去(n+1)得
a(n+1)=[(n+2)/2]b(n+1)-(n/2)bn③
an=[(n+1)/2]bn-[(n-1)/2]b(n-1) ④
③-④得a(n+1)-an=[(n+1)/2]b(n+1)+1/2b(n+1)-[(n+1)/2]bn-[(n-1)/2]bn+[(n-1)/2]b(n-1)-1/2bn
=[(n+1)/2][b(n+1)-bn]+1/2[b(n+1)-bn]-[(n-1)/2][bn-b(n-1)]
又{bn}为等差数列,设公差为d
则a(n+1)-an=[(n+1)/2]d+1/2*d-[(n-1)/2]d
=3/2d
所以{an}是公差为3/2d的等差数列
注:此中的an,bn,a(n+1),b(n+1)均是数列中的项
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Have you got any cars?否定回答和肯定回答?
- 2深圳市的面积大约是2020公顷还是平方千米?
- 3某工人将生产的机器零件放在三个木箱里,第一只中放入95个,第二只中放入零件总数的1/3⋯⋯
- 4《秋天》何其芳和《雪花的快乐》徐志摩用文字加上想象在心中的画面表达出来.9点以前啊,
- 5食堂里有一桶油重100千克,第一周要求这桶油的5分之1,第二周又用去5分之1.
- 6如果0.6A等于Y《A不等于0》,那么A比Y等于《》,Y比A少《》%
- 7知道每天的日照时数如何计算日照百分率?如果是实际日照时数与该地理论上可照时数之比,理论日照时数咋算
- 8证明方程(x-a)(x-b)=1有两个不相等的实数根
- 9I thought i knew the way there but somehow i got lost.
- 10如何证明NO溶于水后有无色气体生成
热门考点