当前位置: > 已知圆C1:x²+y²-4x-2y-5=0与圆C2:x²+y²-6x-y-9=0相交,相交弦所在直线方程为2x-y+4=0,在平面找一点P,过P引两圆切线并使它...
题目
已知圆C1:x²+y²-4x-2y-5=0与圆C2:x²+y²-6x-y-9=0相交,相交弦所在直线方程为2x-y+4=0,在平面找一点P,过P引两圆切线并使它们长都为6√2,求P坐标.
设P(x,y) 则2x-y+4=0 x²+y²-6x-y-9=(6√2)² 解得P(3,10)或P(-23/5,-26/5)

提问时间:2021-02-01

答案
由题意知,点P必在相交弦上,故有2x-y+4=0,由切点,圆心C2及P构成直角三角形,由勾股定理,化简得x²+y²-6x-y-9=(6√2)²
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.