题目
三角形ABC中,O为中线AM上的一动点,若AM=2,则向量OA点乘(向量OB+向量OC)的最小值为_______ 要详细过程和解释!谢谢!请用高一的方法
提问时间:2021-01-31
答案
O为中线AM的一个动点,
根据平行四边形法则可知:OB+OC=2OM,
OA•(OB+OC)= OA•2OM=2|OA||OM|cos180°
=-2|OA||OM|
因为(|OA|-|OM|)²≥0,
即|OA|²+|OM|²-2|OA||OM|≥0,
|OA|²+|OM|²≥2|OA||OM|,
所以|OA||OM|≤((|OA|+|OM|)/2)²=(|AM|/2)²=1,
-2|OA||OM|≥-2,
∴向量OA(OB+OC)的最小值为-2.
根据平行四边形法则可知:OB+OC=2OM,
OA•(OB+OC)= OA•2OM=2|OA||OM|cos180°
=-2|OA||OM|
因为(|OA|-|OM|)²≥0,
即|OA|²+|OM|²-2|OA||OM|≥0,
|OA|²+|OM|²≥2|OA||OM|,
所以|OA||OM|≤((|OA|+|OM|)/2)²=(|AM|/2)²=1,
-2|OA||OM|≥-2,
∴向量OA(OB+OC)的最小值为-2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1从0,1,2,...,9十个数中任选3个不同的数字,求3个数字中不会有0或5的概率?
- 2根号x(1+根号下X)的不定积分
- 3求集合{a,2/a-1}中实数a的取值范围
- 4已知函数f(x)的定义域为[-3,+∞),且f(6)=f(-3)=2.f′(x)为f(x)的导函数,f′(x)的图象如图所示.若正数a,b满足f(2a+b)<2,则b+3a−2的取值范围是( ) A
- 5一道数学题必须用裂项相消方法来做,顺便把裂项相消的方法全部告诉我.
- 6Write five sentences using verbs from above.的意思
- 7爆丸玩具
- 8甲乙两辆车从AB两地相向出发,结果在离中点60千米处相遇,求AB两地的距离
- 9x+2.52%乘3x=5378
- 10英文动词变化
热门考点