当前位置: > 设f(x)=ex1+ax2,其中a为正实数.若f(x)为R上的单调函数,求a的取值范围....
题目
f(x)=
ex
1+ax2
,其中a为正实数.若f(x)为R上的单调函数,求a的取值范围.

提问时间:2021-01-31

答案
f(x)=
ex
1+ax2

∴f'(x)=ex
1+ax2−2ax
(1+ax2)2

∵f(x)为R上的单调函数,
∴f'(x)≥0或f'(x)≤0在R上恒成立,
又∵a为正实数,
∴f'(x)≥0在R上恒成立,
∴ax2-2ax+1≥0在R上恒成立,
∴△=4a2-4a=4a(a-1)≤0,解得0≤a≤1,
∵a>0,
∴0<a≤1,
∴a的取值范围为0<a≤1.
求出f'(x),根据f(x)为R上的单调函数,转化为f'(x)≥0或f'(x)≤0在R上恒成立,根据a为正实数,将f'(x)≥0或f'(x)≤0在R上恒成立,转化为ax2-2ax+1≥0在R上恒成立,利用二次函数的性质,可知△≤0,求解即可得到a的取值范围.

利用导数研究函数的单调性.

考查了利用利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数问题时,经常会运用分类讨论的数学思想方法.属于中档题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.