当前位置: > 若函数fx=x^3-3bx+3b在(0,1)内有极小值,则b的取值范围?...
题目
若函数fx=x^3-3bx+3b在(0,1)内有极小值,则b的取值范围?

提问时间:2021-01-31

答案
f(x)=x^3-3bx+3b,则:
f'(x)=3x^2-3b,
令f'(x)=3x^2-3b=0,
得:x^2=b,
函数f(x)=x^3-3bx+3b在(0,1)内有极小值,
所以b>0,
所以x=-√b,或 x=√b,
x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.