当前位置: > 若函数f(x)=asinx-bcosx在x=π/3处有最小值-2,则常数a、b的值...
题目
若函数f(x)=asinx-bcosx在x=π/3处有最小值-2,则常数a、b的值
求导得f'(x)=acosx+bsinx
f'﹙π/3)=0①
f(π/3)=-2② 联立①②两式解得a、b的值,可是为什么f'﹙π/3)=0

提问时间:2021-01-31

答案
因为极值点的导数值必为0(反之不应成立)
所以知道x=π/3为最值点了
因此f'﹙π/3)=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.