当前位置: > 设曲线y=√(x-1).就是y等于根号下(x-1).过原点做切线.切线的方程怎么求?...
题目
设曲线y=√(x-1).就是y等于根号下(x-1).过原点做切线.切线的方程怎么求?

提问时间:2021-01-30

答案
曲线y=√(x-1)
求导y'=1/2*(x-1)^(-1/2)=1/[2√(x-1)]
设切点为(x0,y0)
那么 y0=√(x0-1)
斜率k=1/[2√(x0-1)]=(y0-0)/(x0-0)
==>
1/[2√(x0-1)]=√(x0-1)/x0
==>
2(x0-1)=x0
==>
x0=2,y0=1,k=1/2
切线方程为y=1/2x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.