当前位置: > f(x)=ax+(a-1)/x+1-2a(a>0)若f(x)>=lnx在[1,+无穷大)上恒成立,求a的取值范围...
题目
f(x)=ax+(a-1)/x+1-2a(a>0)若f(x)>=lnx在[1,+无穷大)上恒成立,求a的取值范围

提问时间:2021-01-30

答案
f(x)>=lnx,x>=1,恒成立,即:ax+(a-1)/x+1-2a>=lnx,亦即a[x^2-2x+1]>=xlnx-x+1,在x>=1上恒成立.显然当x=1,上式取等号恒成立.当x>1,分离常数a,并记a的表达式为h(x)得:a>=(xlnx-x+1)/(x-1)^2=h(x),于是此恒成立问题便转化为:a>=maxh(x),x>1.求导易得:h'(x)=(2x-xlnx-lnx-2)/(x-1)^3,x>1.下面讨论h'(x)的符号,注意到分母大于零.现在记分子为g(x)=2x-xlnx-lnx-2,x>1.求导易得g'(x)=-lnx0,则g(x)在x>1上单减.补充定义g(1)=0,则易知g(x)在x=1连续,于是当x>1,有g(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.